Outcome Measures for the Orthotics & Prosthetics Industry

Brian J. Hafner, PhD
Associate Professor
University of Washington
Seattle, WA USA
Outcomes Measurement

• Outcomes measurement is challenging
 – Takes time, experience, and resources
 – Is it going to get any easier?
• What is being done today?
 – Educational opportunities
 – Resources available to clinicians
 – Research into new measures
• What does the future hold?
 – Tools to facilitate measurement
 – Ways to measure outcomes
 – Types of outcome measures
• But first…where do we stand today?
A Survey of Prosthetists

- **US prosthetists**
 - Regularly provide prosthetic services to people with lower limb loss

- **Provided a list of 20 measures**
 - “Have you ever administered any of the following standardized outcome measures in your daily clinical practice?”
 - □ Always
 - □ Sometimes
 - □ Often
 - □ Rarely
 - □ Never
 - Routine users = “always” or “often” used the measure

Gaunaurd et al. (2014)
Outcome Measure Use in O&P

Instruments and Surveys Routinely Used by Prosthetists in Clinical Practice

Gaunaurd et al. (2014)
Only 38% of prosthetists reported routinely using outcome measures in clinical practice.

Gaunaurd et al. (2014)
Instruments and Surveys Routinely Used by Prosthetists in Clinical Practice

- AMP: 21.5%
- PAVET: 16.5%
- DWT: 10.1%
- TWT: 6.3%
- PEQ: 5.1%
- ABC: 2.5%
- PPA: 2.5%
- TUG: 2.5%
- RPE: 1.3%
- FMA: 1.3%
- OPUS: 1.3%

Gaunaurd et al. (2014)
Outcome Measure Use in O&P

- Limited adoption of outcome measures in O&P
- No specific preference for types of measures
 - Physical Performance
 - Self-Report
- What are the barriers?
“Factors such as the time-consuming nature of the administration of standardised tests, lack of specificity and sensitivity to capture the outcomes of occupational therapy, lack of client-centredness in available outcome measures, lack of knowledge of available tools and lack of knowledge regarding the administration and scoring of the available measures were all reported [by occupational therapists] as obstacles to the use of standardised measures in practice.”

Stapleton (2009)

“[Physical therapists] indicated lack of familiarity with, lack of training in, and lack of access to measures were barriers.”

Jette (2009)

“The most frequent barrier to using standardised outcome measures for clinicians [of various disciplines] was resource limitations. This included lack of time, both to complete them and score them, lack of training on how to use the measures and lack of other resources.”

Burton (2013)
Barriers

- Insufficient time
- Not sensitive enough
- Not patient-centered
- Lack of knowledge
- Limited experience
- Not accessible
- Too much paperwork
- Burden on patients
- No support system
Facilitators

- No single answer
- Need a **cultural** change
- Many possible solutions
 - Academic standards
 - Educational opportunities
 - Resources
 - Measures
 - Technologies

“[Therapists] recognized the need to **change their attitudes and behaviors** and to **employ strategies to manage barriers**, allowing them to engage in activities to improve their knowledge and skills.”

Bowman (2006)
Academic Standards
Academic Standards

- ISPO
 - Category I educational standards
- Outcomes measurement
 - Included as part of the professional profile
 - Described under “research and development”

2.5 Research and development

2.5.1 Conducts continuing evaluation of his/her activities.

2.5.2 Develops and actively participates in formal evaluation and research programmes.

2.5.3 Participates in scientific/professional meetings and contributes papers to scientific/professional journals.

2.5.4 **Use outcome measures to review treatment procedures to determine best practice.**

WHO (2005)
Academic Standards

• NCOPE (USA)
 – Masters (entry-level) degree educational standards
• Outcomes measurement
 – Included under foundational content areas and patient assessment
 – Described under provision of clinical care (“follow-up”)

The graduate must demonstrate the ability to develop and implement an effective follow-up plan to assure optimal fit and function of the orthosis or prosthesis and monitor the outcome of the treatment plan.

C.5.1 Provide continuing patient care and periodic evaluation to assure, maintain and document optimal fit and function of the orthosis or prosthesis.

C.5.2 Develop an effective long-term follow-up plan for comprehensive orthotic or prosthetic care.

C.5.3 Provide adequate education to assure the patient and caregivers understand the importance of adhering to the treatment plan and regular follow-up visits.

C.5.4 Document all interactions with the patient and caregivers.

C.5.5 Demonstrate follow-up assessment regarding fit and function of the device.

C.5.6 Assess the function and reliability of the device using scientifically-validated outcome measures.
Academic Standards

- New courses / content
 - Psychometric properties
 - Selection
 - Recommendation
 - Administration
 - Scoring
 - Interpretation
Educational Opportunities
Professional Training

- Written materials
 - Instructions
 - Required equipment
- Training videos
 - Setup
 - Administration
 - Scoring

University of Miami & University of Washington
Professional Training

• In-person training
 – Reasons for measurement
 – Candidate patients
 – Psychometric properties
 – Limitations
 – Setup
 – Administration
 – Practice
 – Q&A
Professional Training

• Measure toolkits
 – Manual
 • Setup instructions
 • Administration instructions
 • Scoring instructions
 – Equipment
 • Tape measure
 • Stopwatch
 • Ruler
 • Cones
 • Foam block
 – Forms
 • Scoring sheets
 • Surveys
 – Other
 • Clipboard
 • Pens
“How confident are you in your current ability to administer the…?”

- **Timed Up and Go (TUG)**
 - Not at all
 - A little bit
 - Somewhat
 - Quite a bit
 - Very much

- **Amputee Mobility Predictor (AMP)**
 - Not at all
 - A little bit
 - Somewhat
 - Quite a bit
 - Very much

Gaunaurd et al. (2014)
“How confident are you in your current ability to administer the…?”

Percent of Prosthetists

- Not at all
- A little bit
- Somewhat
- Quite a bit
- Very much

Timed Up and Go (TUG)

Amputee Mobility Predictor (AMP)

Gaunaurd et al. (2014)
“How confident are you in your current ability to administer the…?”

<table>
<thead>
<tr>
<th>Response</th>
<th>Pre-Training</th>
<th>Post-Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>A little bit</td>
<td>40%</td>
<td>50%</td>
</tr>
<tr>
<td>Somewhat</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Quite a bit</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Very much</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Timed Up and Go (TUG)

Amputee Mobility Predictor (AMP)

Gaunaurd et al. (2014)
Professional Training

“How confident are you in your current ability to administer the…?”

<table>
<thead>
<tr>
<th>Percent of Prosthetists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all</td>
</tr>
<tr>
<td>A little bit</td>
</tr>
<tr>
<td>Somewhat</td>
</tr>
<tr>
<td>Quite a bit</td>
</tr>
<tr>
<td>Very much</td>
</tr>
</tbody>
</table>

Timed Up and Go (TUG)
Amputee Mobility Predictor (AMP)

Spaulding et al. (2015)
Clinical Literature

- Introduce terminology
 - Types of measures
 - Psychometric properties
- Share experiences
 - Instruments well suited to O&P
 - Practical challenges
 - Realistic solutions
- Provide recommendations
 - Measures sensitive to interventions
 - Measures sensitive to change

Clinically Relevant Outcome Measures in Orthotics and Prosthetics

Phil Stevens, MEd, CPO, FAAOP
Natalie Gross, Student Prosthetist
Susan Kapp, MEd, CPO, LPO

Introduction
The culture of third-party reimbursement for medical services is changing. Increasingly, providers throughout the healthcare industry are called upon to validate the benefit and efficacy of the services they provide. As prosthetists and orthotists, we have historically been less scrutinized in this regard, as the tangible devices we supply have often been looked upon as an “outcome” in and of themselves. However, with the growing emphasis on the importance of outcomes assessment, it will become increasingly necessary for clinicians in O&P to be able to select and administer those accepted outcome measures that will best justify our interventions.

This article outlines a selection of outcome measures that have been found to be both valid and reliable for many of the patient populations encountered within our practices. These include fairly simple performance measures, including the ten-meter walk test (10mWT) and six-minute walk test (6WMWT); slightly more involved performance measures, including the timed up-and-go (TUG) and the L-Test of functional mobility; and comparatively elaborate performance measures including the modified Emory Functional Ambulation Profile (mEFAP) and the Amputee Mobility Predictor (AMP). In addition to these performance-based instruments, self-report measures will also be introduced, including the Activities-specific Balance Confidence scale (ABC), the Locomotor Capabilities Index (LCI), the Socket Comfort Score (SCS), and the Ankle Osteoarthritis Scale (AOS).

The strengths and weaknesses of these measures will be presented to enable the busy practitioner to better select the measures that will best validate the intervention in question. In addition to their validity and reliability, the measures presented were chosen for their clinical applicability. They are comparatively quick and simple to administer, requiring little more than a chair and a stop watch or access to a copy machine. As such, this article is intended as a primer in the incorporation of standardized outcome measures into a busy O&P clinical practice.

Performance Measures: Timed Walking Tests
10mWT
Among the timed walking tests, perhaps the simplest to administer is the ten-meter walk test.
Online Courses

- Online Learning Center
 - Basic principles
 - Terminology
 - Types of measures
 - Review of available measures
 - Psychometric properties
 - Recommendations for use

- Access to measures
 - Lower limb measures
 - Upper limb measures
Learning Materials

- “How-to” videos
 - Setup instructions
 - Administration instructions
 - Scoring instructions
- Quick reference guides
 - Intended uses
 - Psychometric properties
 - Required resources
 - Administration instructions
 - Interpretation information
 - Limitations

Resources:

- Administration time: < 5 minutes
- Number of administrators: 1 clinician
- Equipment: 14 meter corridor, stopwatch, tape or marker
- Training: Basic
- Cost: Free

Administration:

- Begin testing one month post-injury if possible. Simplicity of the test ensures high feasibility in a clinical setting.

1. Measure and mark 10 meter walkway shown in Figure 2 below.
2. Record time taken to travel from 2 to 8 meter mark at preferred and maximum walking speed.
3. Collect three trials, calculate average and document orthosis used.

Figure 2. A diagramatic representation of 10mWFT and walkway set-up

Interpretation:

Although the MCTD has not been related to specific functional outcomes, several values are available to assist with data interpretation. Figure 3 shows functional and average walking speeds for a healthy 20 year old. 5,6

- Direct and justify prescriptive by tracking differences between similar orthotic devices
- Assess capacity for community ambulation when conducted at maximum speed in an outdoor environment
- Simultaneously gather additional temporal/spatial data such as cadence and step length

<table>
<thead>
<tr>
<th>Speed (m/s)</th>
<th>Walking Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>Slowly comfortable, moderate</td>
</tr>
<tr>
<td>1.0</td>
<td>Comfortable, moderate</td>
</tr>
<tr>
<td>1.39</td>
<td>Comfortable, fast</td>
</tr>
<tr>
<td>1.41</td>
<td>Fast walk, Fast walk</td>
</tr>
</tbody>
</table>

Figure 3. A set of meaningful walking speeds used to compare and interpret data obtained

Limitations:

- The test is not suitable for severely impaired ambulators for whom reliability and validity of results decreases. A floor effect occurs for those who cannot walk beyond 10 meters. 1,6,7
- The test also fails to assess ability to transfer, walk long distances, turn and negotiate obstacles. Therefore, it can be combined with other measures such as the WSCH II and TUG to provide a comprehensive analysis. 1,6,7
- Results can also be compared to values extensively reported in orthotic literature.
Online Databases

• Outcome measure databases
 – Educational information
 • Terminology
 • Statistics
 • Psychometric properties
 – Online measure repositories
 • 100’s of measures
 – Selection tools
 • Area of assessment
 • Population(s)
 • Time of test
 • Type of test
 • Cost
 – Compare and contrast
 – Usage recommendations
Collecting Measures

- Computerized outcome measures
 - Easy data entry
 - Patient/clinician instructions
 - Automatic scoring
 - Generated reports
 - Direct input into EMR
 - Saves time
 - Reduces paperwork
Testing Measures

- Testing in O&P populations
 - Limb loss
 - Stroke
 - Cerebral palsy
 - Multiple sclerosis
- Testing psychometric properties
 - Reliability
 - Validity
 - Sensitivity
 - Responsiveness
 - Normative data
 - Translations
Instructions for Participants
For each of the following, please indicate your level of confidence in doing the following activities without losing your balance or becoming unsteady by choosing one of the percentage points on the scale from 0% to 100%. If you do not currently do the activity in question, try and imagine how confident you would be if you had to do the activity. If you normally use walking aid to do the activity or hold onto someone, rate your confidence as if you were using these supports. If you have any questions about answering any of the following, please ask the administrator.

Rating Scale
For each of the following activities, please indicate your level of self-confidence by choosing a corresponding number from the following rating scale:

<table>
<thead>
<tr>
<th>0%</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No confidence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Completely confident</td>
</tr>
</tbody>
</table>

ABC Questions
How confident are you that you will not lose your balance or become unsteady when you ….

___ % 1. Walk around the house?
___ % 2. Walk up or down stairs?
___ % 3. Bend over and pick up something off the floor?
___ % 4. Reach for a small can off a shelf at eye level?

ABC based on Powel (1995)
Revising Measures

For each of the following, please indicate your level of confidence in doing the following activities without losing your balance or becoming unsteady. If you do not currently do the activity in question, try and imagine how confident you would be if you had to do the activity. If you normally use walking aids to do the activity or hold onto someone, rate your confidence as if you were using these supports.

<table>
<thead>
<tr>
<th>How confident are you that you will not lose your balance or become unsteady when you</th>
<th>No confidence</th>
<th>Low confidence</th>
<th>Moderate confidence</th>
<th>High confidence</th>
<th>Complete confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Walk around the house?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Walk up or down stairs?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Bend over and pick up something off the floor?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Reach for a small can off a shelf at eye level?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABC based on Sakakibara (2011)
Creating New Measures

- Contemporary measures
 - Rigorous development standards
 - Conceptual framework
 - Input from stakeholders
 - Literature review
 - Focus groups
 - Item pooling
 - Cognitive interviews
 - Pilot testing
 - Large scale testing
 - Longitudinal testing
 - Translation

**PROMIS®
Instrument Development and Psychometric Evaluation
Scientific Standards**

The Patient-Reported Outcome Measurement Information System (PROMIS®), funded by the National Institutes of Health, aims to provide clinicians and researchers access to efficient, valid, and responsive self-reported measures of health, including symptoms, function and well-being. PROMIS instruments are grounded in modern measurement theory. They were developed using mixed qualitative and quantitative methods employed to inform one another in an iterative process.

This document describes a set of standards that serve as the scientific foundation and guidance for the development and evaluation of PROMIS item banks and instruments. A general summary of instrument development and validation standards is followed by an appendix that summarizes a maturity model for PROMIS item banks and instrument development and evaluation. The instrument maturity description document provides information concerning the readiness of measures derived from the PROMIS item banks for use in clinical research and practice (see Appendix 1). This is then followed by several appendices that outline specific practices in more detail. The practices outlined in this document were based on the experience of PROMIS investigators, the published literature, and several existing sets of scientific methodology documents. These scientific standards are operationalized by a series of guidelines that provide detailed guidance for item bank development and psychometric evaluation, as well as a summary of existing PROMIS practices. Reference citations are provided at the end of each individual guidance document.

Instrument development and psychometric evaluation is a process of accumulating evidence. Some standards, such as those related to translation and cross-cultural adaptation, reliability, validity, or interpretability, will pertain only to those item banks and instruments that have a relevant language translation or have accumulated data on reliability, validity, or information regarding interpretation. Similarly, guidelines regarding item banks and CAT instruments apply only to calibrated item banks; yet not every PROMIS product is a calibrated item bank.

List of Standards
1. Defining Target Concept and Conceptual Model
2. Composing Individual Items
3. Constructing Item Pool
4. Determining of Item Bank Properties
5. Testing and Instrument Formats
6.Validity
7. Reliability
8. Interpretability
9. Language Translation and Cultural Adaptation

We use the term “Standards” recognizing that “best practice” instrument development and psychometric evaluation often requires flexibility in choosing from among competing approaches or decision thresholds. This document is therefore more of a “Guidance” with minimum standards and ideal targets. We invite comments at info@nihpromis.org.
Creating New Measures

- Calibrated item banks
- Short forms
 - Standardized or custom
 - Same metric – scores have the same meaning

Physical Function Item Bank
124 items, 15 pages

Physical Function Short Form
10 items, 1 page

Physical Function Profile
4 items, ¼ page
Creating New Measures

- Flexible Administration Formats
 - Pen and paper forms
 - Computerized forms
 - Tablets and smartphones
 - Voice recognition
Creating New Measures

- Computerized adaptive testing (CAT)
 - Simplified testing
 - Automatically generated reports
 - Example: PROMIS-PF - 124 bank items, ~4 CAT items required
Creating New Measures

• New terminology
 – T-scores
 – Standard error
 – Minimal clinically important difference

• New kinds of data
 – Profiles

Health Profiles of Persons with Lower Limb Loss

<table>
<thead>
<tr>
<th>Health Domain</th>
<th>Better Outcome</th>
<th>Worse Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxiety</td>
<td>-0.64</td>
<td>4.68</td>
</tr>
<tr>
<td>Sleep disturbance</td>
<td>-0.64</td>
<td>-1.77</td>
</tr>
<tr>
<td>Depression</td>
<td>-0.75</td>
<td>-1.68</td>
</tr>
<tr>
<td>Pain interference</td>
<td></td>
<td>-7.60</td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td>-3.93</td>
</tr>
<tr>
<td>Social role satisfaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical function</td>
<td>-10.0</td>
<td></td>
</tr>
<tr>
<td>Applied cognition</td>
<td>-5.0</td>
<td></td>
</tr>
</tbody>
</table>

T-Score Difference (Sample - US Norms)

University of Washington
Creating New Measures

- Normative data
 - Facilitates interpretation
 - Compare patients

Table 5 – PLUS-M™ T-scores and percentiles (total sample)

<table>
<thead>
<tr>
<th>PLUS-M T-Score</th>
<th>Transfemoral Dysvascular (n=129)</th>
<th>Transfemoral Trauma (n=307)</th>
<th>Total Sample (n=1606)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>42.9</td>
<td>47.4</td>
<td>50.5</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>37.2</td>
<td>41.7</td>
<td>45.1</td>
</tr>
<tr>
<td>50th Percentile (median)</td>
<td>42.6</td>
<td>47.2</td>
<td>50.1</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>49.7</td>
<td>53.3</td>
<td>55.3</td>
</tr>
<tr>
<td>Standard Deviation (SD)</td>
<td>9.0</td>
<td>8.9</td>
<td>8.1</td>
</tr>
<tr>
<td>Range (min – max)</td>
<td>17.5 – 67.0</td>
<td>21.9 – 73.6</td>
<td>25.7 – 76.6</td>
</tr>
</tbody>
</table>

Table 6 – PLUS-M™ T-scores and percentiles (males)

<table>
<thead>
<tr>
<th>PLUS-M T-Score</th>
<th>Transfemoral Dysvascular (n=96)</th>
<th>Transfemoral Trauma (n=261)</th>
<th>Total Sample (n=357)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>43.9</td>
<td>48.5</td>
<td>51.3</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>37.6</td>
<td>42.7</td>
<td>45.7</td>
</tr>
<tr>
<td>50th Percentile (median)</td>
<td>44.6</td>
<td>48.0</td>
<td>50.3</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>49.8</td>
<td>54.6</td>
<td>56.1</td>
</tr>
<tr>
<td>Standard Deviation (SD)</td>
<td>8.4</td>
<td>8.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Range (min – max)</td>
<td>24.1 – 67.0</td>
<td>21.9 – 73.6</td>
<td>25.7 – 76.6</td>
</tr>
</tbody>
</table>

Table 8 – PLUS-M™ T-scores and percentiles (persons under 35 years old)

<table>
<thead>
<tr>
<th>PLUS-M T-Score</th>
<th>Transfemoral Dysvascular (n=74)</th>
<th>Transfemoral Trauma (n=42)</th>
<th>Total Sample (n=116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>53.7</td>
<td>50.6</td>
<td>52.8</td>
</tr>
<tr>
<td>25th Percentile</td>
<td>48.8</td>
<td>48.4</td>
<td>47.4</td>
</tr>
<tr>
<td>50th Percentile (median)</td>
<td>50.7</td>
<td>44.9</td>
<td>52.9</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>55.6</td>
<td>47.5</td>
<td>67.4</td>
</tr>
<tr>
<td>Standard Deviation (SD)</td>
<td>9.2</td>
<td>12.9</td>
<td>7.4</td>
</tr>
<tr>
<td>Range (min – max)</td>
<td>46.3 – 67.0</td>
<td>42.2 – 73.5</td>
<td>38.4 – 76.6</td>
</tr>
</tbody>
</table>
Technologies
Portable Instruments

- Load cells / strain gages
 - Socket reaction forces
 - Alignment
 - Forces on implants
 - Rollover kinetics
 - Activity classification
 - Symmetry (bilateral)

- GPS sensors
 - Location
 - Community activity
 - Access

University of Nevada, Las Vegas
Flinders University, Australia
University of Wisconsin-Madison
Portable Instruments

- Temperature / pressure sensors
 - Wear, compliance
- Accelerometers / gyroscopes
 - Activity, posture recognition

Maxim iButton
Actilife Actigraph
Xsens MVN
University of Brescia
University of Washington
King's College London
Device Sensors

• Smart Prosthetics/Orthotics
 – Integrated sensors
 – Computer communication
 – Patient smartphone applications

• Great potential for measurement
 – Troubleshooting
 – Repair/replacement
 – Warranty/servicing
 – Use/wear time
 – Activities
 – Stumbles/falls
Motion Capture Technologies

• Low-cost 2D and 3D systems
 – Inertial sensors
 – Portable walkways
 – Moiré tracking

ADPM, Inc.
CIR Systems, Inc.
Metria Innovations, Inc.
Gaming Technologies

Nintendo Wii Balance Board

Microsoft Kinect

Touro College and A Step Ahead Prosthetics

Marche Polytechnic University
The Future of Clinical Practice?

• Before visit
 – Integrated device sensor measures daily activities, stumbles, and falls
 – Periodic, brief health surveys administered by CAT (email, phone)
 – Valid and reliable measures selected for the patient
 – Practitioner and assistant review measures and take online training course

• During visit
 – Self-report surveys administered to patient on tablet computer
 – Measures automatically scored and data uploaded to patient file
 – Assistant downloads data from device and administers performance tests
 – Report generated with current scores, historical scores, and appropriate norms
 – Practitioner reviews report and meets with patient to discuss concerns
 – Revised treatment implemented to address identified issues
 – Practitioner programs portable instrument to collect data and attaches to device

• After visit
 – Instrument monitors patient outcomes and patient mails it back to clinic
 – Assistant downloads data and automated analysis confirms positive outcomes
 – Patient data recorded and system prepares automatic justification report
 – All of the above integrated with clinic-wide data to conduct QI activities
Final Thoughts

- Limited use of outcome measures
- Many barriers exist
- But so do facilitators
 - Academic standards have changed
 - Educational opportunities exist
 - Resources are available
 - Measures are being tested, revised, and developed
 - New technologies offer promise
- The culture is already changing
 - With it comes new challenges…and opportunities
 - Potential to elevate our industry and profession

6. World Health Organization (WHO). Guidelines for training personnel in developing countries for prosthetics and orthotics services. 2005

Thank You

Brian J. Hafner, PhD
Associate Professor
Department of Rehabilitation Medicine
Box 356490, Seattle, WA 98195
Email: bhafner@uw.edu